- 5. $x = \frac{y-5}{3}; -\frac{8}{3}$
- **6.** $x = \frac{y+2}{-7}; \frac{1}{7}$
- 7. x = 2y + 6; 0
- **8.** $x = -\frac{3y-3}{2}$; 6
- **9.** $x = \sqrt[3]{\frac{y}{3}}; -1$
- **10.** $x = \pm \sqrt[4]{\frac{y+5}{2}}; \pm 1$
- 11. $x = 2 \pm \sqrt{y+7}$; 0, 4
- **12.** $x = \sqrt[3]{y+1} + 5$; The input is $\sqrt[3]{-2} + 5$ when the output is -3.
- **13.** $g(x) = \frac{1}{6}x;$

14. $g(x) = -\frac{1}{3}x$;

25. $g(x) = \sqrt[3]{x} + 3$

26. $g(x) = \sqrt[3]{x} - 4;$

27. $g(x) = \sqrt[4]{\frac{x}{2}}$

15. $g(x) = \frac{x-5}{-2}$;

16. $g(x) = \frac{x+3}{6}$;

17. g(x) = -2x + 8;

18. g(x) = 3x + 3;

19. $g(x) = \frac{3x+1}{2}$;

20. $g(x) = \frac{5x-1}{-4}$;

- **21.** $g(x) = \frac{x-4}{-3}$; *Sample answer:* switching *x* and *y*; You can graph the inverse to check your answer.
- 22. a. yes; The x- and y-coordinates are switched.
 - **b.** no; The x- and y-coordinates were not switched.
 - c. no; The x- and y-coordinates were not switched.
- **23.** $g(x) = -\frac{\sqrt{x}}{2}$;

24. $g(x) = -\frac{\sqrt{x}}{3}$;

28. $g(x) = \sqrt[6]{-x}$;

29. When switching *x* and *y*, the negative should not be switched with the variables;

$$y = -x + 3$$
$$x = -y + 3$$

- _v + 3 = -
- **30.** The inverse should only be $y = \sqrt{7x}$ because the domain of f is $x \ge 0$.

$$f(x) = \frac{1}{7}x^2, \, x > 0$$

$$y = \frac{1}{7}x^2$$

$$7x = y^2$$

 $\sqrt{7x} = y$

- 31. no; The function does not pass the horizontal line test.
- 32. no; The function does not pass the horizontal line test.
- 33. no; The function does not pass the horizontal line test.
- 34. yes; The function passes the horizontal line test.
- **35.** yes; $g(x) = \sqrt[3]{x+1}$
- **36.** yes; $g(x) = \sqrt[3]{-x+3}$